
2. epot 1tpeandDats For Aprve
IAIO PAGRQ, OM No.n 0704-01 71 9

4. Tis antd Subtitle. L. Fundin Numbers.

Flux-corrected _________________Methodfor A-PEMct Na 62715

& Abs Tk H XSF
t. E. McDonald 

AcW o D261
7. Performing Organization Name(s) and Address(es). S. Performing Organization

Reort Number.
Naval oceanographic and Atmospheric
Research Laboratory* JA 322:075:88
Stennis Space Center, MS 39529-5004

9. SponsoringlMontoring Agency Name(s) and Addres(a). 10. SponsoringIMonitorIng Agency
Report Number.

Defense Nuclear Agency
6801 Telegraph Road JA 322:075:88
Alexandria, VA 22310

11. Supplementary Notes.
*Formerly Naval Ocean Research and Development Activity

12a. DistributionlAvaiisbility Statement. 12b. Distribution Code.

Approved for public release; distribution
is unlimited.

13. Abstract (Maximum 200 words).
.The pseudospectral method has under-used advantages in problems involv-
ing shocks and discontinuities. These emerge from superior accuracy in
phase and group velocities as compared to finite difference schemes of
all orders. Dispersion curves for finite difference schemes suggest
that group velocity error typically outrank. Gibbs' error as a cause of
numerical oscillation. A flux conservative form of the pseudospectral
method is derived for compatibility with flux limiters used to preserve
monotonicity. The resulting scheme gives high quality results in linear
advect ion and shock format ion/propagation examples.

DTIC
SELF 0F
AUG 2 1 t0

14. S d*t Team.s. Nub rofPg.

#tfPnctra eTchniques;sW Shock Waves0

17. Security Classification ill. Socurf C l atilon '19. Security Cleo Ification 20. Limitation of Abstract.
Of Report. of This Page. of Abstracti

I Unclassified Unclassified UnlsifeIA
NNI#?W4H-=aoo StAndard Fm~n PQA (Pey 2 911

pmndr~' ArS



Reprinted from JOURNAL OF COMPUTATIONAL PHYSICS Vol. 82. No. Z June 1989
All Rights Reserved by Academic Press, New York and London Printed in Betwn
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The pseudospectral method has under-used advantages in problems involving shocks and
discontinuities. These emerge from superior accuracy in phase and group velocities as com-
pared to finite difference schemes of all orders. Dispersion curves for finite difference schemes
suggest that group velocity error typically outranks Gibbs' error as a cause of numerical
oscillation. A flux, conservative form of the pseudospectral method is derived for compatibility
with flux limiters used to preserve monotonicity. The resulting scheme gives high quality
results in linear advection and shock formation/propagation examples. e- 1989 Academic Press,
Inc.

INTRODUCTION

Spectral methods for inviscid flow problems involving shocks have been
developed at a slower rate than for problems where discontinuities are absent. This
has been recognized explicitly [1] and implicitly [2] in papers taking a broad view
of the subject. It is the purpose of the present paper to show how the pseudo-
spectral method [3] can be substituted for a finite difference scheme in flux
corrected transport (FCT) calculations, and to show why the results are better. The
FCT method [4, 5 ] is effectively a local, nonlinear filter used to control numerical
oscillations near shocks and steep gradients.

The flux correction method used here employs the Zalesak flux limiter [5]. In
this approach, two arbitrary scheines are cast in conservation form: one of high
order (pseudospectral), and the other monotone (e.g., first order upwind). A "flux
correction" filter effectively assigns a local weight factor to fluxes from each scheme.
The method adopts the form of the high order scheme in smooth regions. In loca-
tions where monotonicity could be violated by the high order scheme, weighting is
shifted in favor of the low order fluxes. Comparisons made elsewhere with analytic
solutions show that the accuracy of the overall method generally increases with the
order of the high order scheme [6, 7].

Zalesak carried out an FCT pseudospectral calculaticji [6] for linear advection
which gave results of higher quality than those from fiute difference schemes up to
sixteenth order in space. The method, however, was formulated in a fashion that
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414 B. E. MC DONALD

did not take advantage of fast Fourier transforms (FFTs). Taylor et al. [8] gave
results of a pseudospectral shock calculation using FFT's. They chose a Chebyshev
polynomial expansion in space, appending the Boris-Book flux limiter [4] as a
postprocessor to control oscillations at each time step. This involved adding global
second order diffusion, followed by flux limited antidiffusion. Properties of the
method itself were not discussed in that work, nor were the effects of wave propagp-
tion through the nonuniform grid required for the Chebyshev expansion. This work
takes a different approach to discretization and flux limiting and does take advan-
tage of FFT's.

Depending on the physical problem under consideration, high order methods
may have advantages over shock capturing methods of the Godunov type [9-11].
These methods discretize variables into piecewise polynomial sections (allowing
discontinuities between sections or subsections) and use gasdynamic Riemann
solutions to advance a step in time. After the timestep, the solution is projected
onto the original basis as input to the next timestep. These methods can yield
accurate results for shocks, but their complexity increases greatly with order. In
regions where the flow may be dominated by linear advection, these methods give
results equivalent to those of low to moderate order finite differences.

THE HIGH ORDER SCHEME: PSEUDOSPECTRAL

We will work with a model problem for a scalar hyperbolic equation in one
dimension:

aV + .(V) = O. (1)

This equation leads straight to the conservation of f v dx and to the preservation of
monotonicity (extrema can be neither created nor enhanced). The method
developed in this paper may be modified to include systems of equations by
replacing q(v) by the appropriate advective flux uv, and using suitable donor cell
fluxes in Eq. (10) below.

The pseudospectral method evaluates the x derivative in (1) by performing an
FFT, then evaluating derivatives analytically before the inverse FFT. Let the finite
difference grid be

x. =j. 6x, j= , 2, ... , N, (2)

and let be represented in space by Fourier series:
0= T i(k) exp(ikx). (3)

k

We will assume periodic boundary conditions on all variables for simplicity. Other
boundary conditions can, of course, be included at the expense of altering the
selection of admissible modes. One can use the identity

sin(k) eIkd/ 2 -e-i"x2("L-- 2i()
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to express the x derivative of (3) as

Yk ~k etk(x + 6x/ 2
) _ ek(x - 6x/2)

k 2 sin(k 6x/2) (5)

One recognizes this as the difference between a function shifted forward half a grid
cell and the same function shifted backward half a grid cell. This suggestive result
leads directly to the conservative flux form given in (6) and (7) below.

For the discretization of (1) in time, we will use the leapfrog trapezoidal scheme
[12] with step 6t between time levels. This scheme can be thought of as a
predictor-corrector with the predictor being a leapfrog step from time level n - I to
a provisional level n + I* using spatial derivatives evaluated at level n. Then the
provisional level n + I * is averaged with n to yield a provisional level n + "*. The

trapezoidal corrector is a step from n to n + I using spatial derivatives evaluated at
n + ". This provides second order accuracy in time, while damping the computa-
tional mode ("odd-even" Nyquist frequency oscillations in space and/or time),
which could interfere with the flux corrector used here.

Employing (5) in the time-discretized equation (1) leads to the conservative flux
form for the pseudospectral method:

+ I = - + 1/ (6)
Fv j - j+ 1/2 j- 1/2(

where superscripts indicate time level and

Fjn +, 1/ t i /2()eid k 6x/2 e (7)
j+12-6X k o sin(k 6x12)) 7

A flux form of this type seems to have been recognized only recently as a possible
ingredient in a monotonicity preserving scheme [13, 14]. The leapfrog trapezoidal
time advancement scheme used here is stable for Courant number
&= I U 6t/6x max < 21/ 2/7t =045, where u is the characteristic speed (see (9) below).
For simple leapfrog advancement, the limit is 1/7r. The k =0 mode has been
dropped from (7) for an important reason. Different additive constants in high and
low order fluxes would lead to a meaningless bias in the flux correction process,
which assigns a physical interpretation of intergridpoint transport to the difference
between high and low order fluxes. We remove the spatial mean from the high
order flux (7) by excluding k =0, and from the low order flux by computing the "
average and subtracting it.

THE Low ORDER SCHEME: MONOTONE UPWIND

A convenient first order monotone scheme [7] for (1) is upwind differencing with
the differencing direction defined by a variable es

Wj+ 1/2= ( j+ I j)"(Vj+ I - Vj), (8) r

Sumla • II a i m l a I i DH H
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whose sign is that of the characteristic speed u somewhere on the interval (v,, v,
where

udo 
(9)

We define first order fluxes

fj _J t/4 x+ (10a)
10+, j=[ +,I bt/,x, ,j + 12 <o.,

and remove the spatial average,

fj1 1/2 -fj+ 1/2 - (f>- (10b)

When equations are given without superscripts, it is understood that all variables
are evaluated at the same time level. The removal of the mean value in (10b) has
no effect on the low order update (I I), but is necessary for compatibility with (7)
in the flux correction process. A monotone first order update accounting for
reversals in the sign of u is

v+t =vf7i- f7 2  (11)vi =, v-fl+, 1 +fl- 1 2"

This provisional update to time level n + ' is set aside for correction as described
below. The above scheme is monotone for E < 11. This allowed Courant number
is smaller by a factor of two than that for stability alone. The extra factor of
two allows for monotonicity preservation when u is compressive at an extremum
of v (7].

FLUX CORRECTION: A NONLINEAR FILTER

The next step is to construct a set of "flux corrections"
12 - + 1 2-+ 2 (12)

and filter them with a flux limiter to prevent creation or enhancement of extrema.
For problems of higher than one dimension, flux limiters have been constructed [5]
which require auxiliary storage. In one dimension, however, it is sufficient to use

bfn"|' +j 11 n+ 2 ' n+I'l

n+1/2 1/ .max{0, min[T+ ,12 6f,+ 1i I. 2 (Vz.,2

Sl 1/2 -/2 "Vn S++ V"/2I] •+(13)

where
Sf4 (, 1/2 =)

Si + 1/2 = Sin" +1€ 1/2

(14)
1/2 = f 1/2 + sign(v+ 1 - v"+ + )]

I[t --



FLUX-CORRECTED PSEUDOSPECTRAL METHOD 417

This is similar to the Boris-Book flux limiter, but with the following differences. The
flux correction bf has been constructed as the difference between fluxes from two
specified schemes, rather than the negative of a diffusive flux added to damp oscilla-
tions. The factor T- I+,bfjt+ "' replaces I 6bf jn1/21 in the limiter of Ref. [I]. This
replacement requires that the correction to high order not decrease gradients
locally; i.e., the flux correction should be of an antidiffusive nature everywhere.

This form preserves monotonicity of v and results in total fluxes which are point-
by-point intermediate between high and low order fluxes. The completed monotone
pseudospectral update is then

Vn+ 1 +I'"-te + 1/2 + fn+ 1/2

l v -6fi+6'+ 1 5-/. (15)

This approach to flux limiting recovers the high order fluxes [5] Fj + /2 at all
locations j+ 1/2 except where the high order scheme could violate monotonicity at
j or j + 1. Thus spectral accuracy is retained in smooth regions.

OSCILLATIONS: GmIBs ERROR AND PHASE ERROR

This section discusses properties of numerical schemes which have been
recognized previously [15-17], but which have received little attention in the con-
struction of flux limiters. Numerical oscillation is commonly attributed to Gibbs'
error; i.e., the tendency of a series representation to oscillate near a jump in nodal
values. A stronger contributor to numerical oscillation in advection scheme results
is discretization error in phase and group speed. Numerical oscillations from
difference schemes of various orders are illustrated in Fig. 1. (This figure is the first
part of a before-and-after pair, with Fig. 4 containing results after flux correction.
The pseudospectral results in Fig. 4 are flux-corrected in exactly the same way as
the finite difference results.) Linear advection examples are given for two profiles
which reveal numerical artifacts in finite difference schemes: a discontinuous square
wave and a semicircle. The square wave tests monotonicity preservation and reveals
residual numerical diffusion in the rounding of the discontinuity. The semicircle is
sensitive to terracing or oscillation in slope.

A trademark of Gibbs' error is that the width, rather than the amplitude of the
oscillation, tends to zero as the number of retained frequencies increases. The width
of the region of spurious oscillations in Fig. 1, however, increases with the order of
the scheme. This is characteristic of group velocity error. Figure 2 gives a result
more typical of Gibbs' error. Here the linear advection example of Fig. le is carried
much further in time with the pseudospectral method. A mild damping of the com-
putational mode results from the leapfrog-trapezoidal time advancement scheme. As
pointed out below, the pseudospectral method gives accurate phase speeds for all
modes except the odd-even mode. Gradual removal of the small spectral interval
where phase and group velocity errors are significant has exposed the underlying
Gibbs' error.
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FIG. I. Passive scalar advection test without flux limiter. (a) Initial condition; (b) second Order
spatial differencing after 30 timesteps at a Courant number of 0.1; (c) F~ourth order; (d) JEighth order;
(e) Pseisdospectral. Solid lines: analytic solution; points: numerical results.
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FIGURE ]-Continued

For the sake of illustration, Fig. 3 shows phase and group velocities for eight
schemes of order 2 through 128 plus pseudospectral. Such high orders are included
only to illustrate how much would be required of a finite difference scheme to
challenge pseudospectral accuracy at high wavenumber. These curves are calculated
to arbitrary order as follows. Consider the linear advection equation

O,V= -cav, (16)

where c is constant. Assuming temporal and spatial variation ei(kx- ') and
replacing 0. in (16) with a finite diffeence operator of a given order accuracy then
gives o as a function of k 6x. (Temporal truncation error is omitted from this
analysis.) For a stable scheme of even order, a) is real. An expression for the
numerical derivative of a function f(x) accurate to order 2M at a point x0 on an
evenly spaced grid is [18]

6f(xo) M f(x) -f(xo) n J

6x E -x - o (17 )

a i m MO a e i U i I-
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FIG. 2. Pseudospectral calculation of le continued to 800 steps.
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FIG. 3. (a) Phase and (b) group velocity normalized to true values as a function of the wavenumber
for schemes of the indicated order.
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FIGuRE 3-Coninved

where x0 resides at the center of the 2M + 1 point stencil (x m, ..., xv). Use of this
result to calculate a dispersion curve from (16) leads to the following expressions
for the phase velocities (18) and group velocities (19) for constant mesh spacing 6x.

w - sinnk 6x j(18)
ek Y--,O k 6x 1 -

a8w M (9
C -n--,'Ocos nk6xH n 19

C n-Moo ooi-n
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Fio. 4. Results analogous to Fig. 1 after 800 steps including the flux limiter of Eq. (13).
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FIGuRE 4-Continued

Figure 3 reflects that phase velocities from finite difference schemes are accurate
for the well-resolved (low wavenumber) modes, but fall to zero at the odd-even
mode. Then the best a real scheme can do is stay with the linear dispersion relation
as long as possible before falling away. (In principle, a complex scheme could be
constructed to retain phase information lost in time-advancing the odd-even
mode.) Since the group velocity (i.e., the wave packet speed) is proportional to the
slope of the dispersion curve aw(k), information in the high wavenumber modes
propagates in the wrong direction at a speed which increases with increasing order.
This behavior is evident in Fig. 1.

With the pseudospectral method, only the highest mode falls off the phase
velocity curve, so that group velocities are accurate for all but the highest mode
interval. The leapfrog-trapezoidal time advancement scheme used here contributes
a mild damping to these modes, keeping results from being highly contaminated
with the backward-running error seen in Fig. 1. Extension of the calculation of
Fig. le from 30 to 800 timesteps with the pseudospectral method (Fig. 2) yields the
low oscillation and high structure resolution levels one would hope for before
applying a monotonicity filter.

An interesting and little-realized fact can be gleaned from Fig. 3. Even when the
finite difference order is one less than the number of grid points, errors still occur
in the high wavenumber phase and group velocities, and the pseudospectral method
stands unsurpassed. In this case, the polynomial representing the finite difference
scheme passes through all the nodal values, and one might be tempted to think that
this situation could not be improved. The resolution of this apparent paradox is
that finite differences do not give exact results for differentiation of the sinusoid
used in defining phase velocity, while the pseudospectral method does.
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FIG. 5. Shock formation from Bergers' equation for an inverted parabolic profile initial condition.
Solid line: analytic solution; crosses: PSF results.
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FIGURE 5-Continued

RESULTS WITH FLUX CORRECTION

Linear Advection

Figure 4 shows results analogous to those of Fig. 1 with a flux limiter of the form
of (13) applied to finite difference methods of increasing order, including the scheme
of (7)-(13). This latter combination will be designated PSF for pseudospectral flux
correction. All tests use the leapfrog-trapezoidal time differencing scheme. Lacking
the spurious oscillations of Fig. 2, Fig. 4 shows the kind of convergence with
increasing order that one would hope to find in a well-behaved scheme. Numerical
smoothing evident in the rounding and broadening of the step function profile
decreases with order, even after the addition of the local diffusion implicit in the
flux limiter.

A more demanding test of the schemes than monotonicity preservation is their
accuracy against the formation of terraces. These result from the tendency to form
oscillations in slope. These slope oscillations could occur at low amplitude without
invoking any local smoothing from the flux limiter. Only when they reach an
amplitude large enough to cause artificial extrema, the flux limiter enters and
effectively converts an individual artificial extremum to a plateau. A distribution of
these plateaus appears as a terrace. The semicircle profile of Fig. 4 shows a
decreasing tendency to form terraces as the order of the scheme increases. Both the
amplitude and width of the terraces decrease with order. This is consistent with the
view that increasing the order of the scheme moves to a higher wavenumber and
narrows the spectral interval over which phase and group velocities are in error.

Shock Formation
Another revealing test of a scheme for hyperbolic problems is to follow the evolu-

tion of a continuous profile subject to the inviscid Burgers' equation into steepening
and shock propagation. Many tests of contemporary shock following methods have
been published, in which shocks are present in initial conditions. These tests may
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not reveal artifacts which can occur in the continuously steepening case.
Pathologies that can occur in steepening have been demonstrated elsewhere [7].

Figure 5 shows PSF results for shock formation and propagation as described by
the inviscid Burgers' equation, in comparison with the analytic solution. The shock
front behavior is in excellent agreement with the analytic solution, while the back
side of the shock is contaminated by an odd-even oscillation. This is substantially
improved in Fig. 6 by the use of a high order (16th) linear filter. The filter consists
of adding to (7) a flux

j+ 1/2 A (v7+ I - vi"), (20)

where 8 is the maximum Courant number in the calculation, m = 16, and A is the

normalized second difference operator,

j - - v j + + I + v i -1V j _ , . ( 2 1 )

The filter (20) is added to the high order flux (7) before the flux limiter is evoked,
so that monotonicity of the total scheme is preserved. This form for the filter was
found most satisfactory after experimenting with several more complicated forms.

SUMMARY

Gibbs' error is often cited as the cause of numerical oscillation near discon-
tinuities. It is likely, however, that finite difference phase error causes more artificial
oscillation than Gibbs' error. The pseudospectral method is capable of higher
quality resolution of discontinuities than finite difference schemes because of its
accuracy in phase and group velocities for spatial modes below the Nyquist
frequency. Numerical oscillations in both value and slope are smaller with the
pseudospectral method than with finite difference schemes. The pseudospectral
method when cast in flux difference form (7) is compatible with monotonicity-
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enforcing flux limiters developed for finite difference schemes. The resulting
pseudospectral flux correction (PSF) method appears very attractive for problems
involving discontinuities and shock formation. For passive advection of a
discontinuity at a uniform speed, PSF controls oscillations in value and slope while
maintaining structure details. For shock propagation, however, a high-order linear
filter is desirable for controlling oscillations in slope behind the shock. Further
work is needed on this feature of the scheme.
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